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ABSTRACT

The question of whether rain gauge data from complex terrain are suitable to test physical models of
orographic precipitation or to estimate free parameters is addressed. Data from three projects are consid-
ered: the Intermountain Precipitation Experiment (IPEX) and the California Land-falling Jets Experiment
(CALJET), both in the United States, and the Mesoscale Alpine Programme (MAP) in the European Alps.
As a prototype physical model, a new linear theory including airflow dynamics, condensed water advection,
and leeside evaporation was employed. Theoretical considerations using the linear model showed sensitivity
of point measurements across an ideal hill. To assist in model evaluation with real data, a new measure of
“goodness of fit” was defined. This measure, “location sensitivity skill” (LSS), rewards detail as well as
accuracy. For real data comparison, the linear model predictions show skill using traditional methods and
the new LSS measure. The findings show that the wind direction and stability, and especially the cloud time
delay (tau), are the sensitive parameters for point precipitation. The cloud time delay was the primary
controller of point precipitation amplitude, and the stability tended to shift the precipitation pattern. Direct
measures of tau are generally not obtainable, but this study indirectly constrained tau to 0–1000 s. The need
for a denser observational network with tighter time control was revealed.

1. Introduction

One of the most challenging problems in weather
forecasting is the quantitative prediction of precipita-
tion. This challenge is even greater in regions with com-
plex terrain where the ability to evaluate precipitation
forecasts is significantly reduced due to nonrepresenta-
tive rain gauge sites and insufficient rain gauge density.
This difficulty is unfortunate from a practical point of
view, as forecasting of flash flooding, mudslides, ero-
sion, water resources, and glacier mass budgets in
mountainous terrain depends on accurate models.

At the same time, the subject of orographic precipi-
tation has an inherent simplicity as a good part of the
condensation is caused by forced ascent over fixed,
well-known, terrain shapes (Charba et al. 2003). Oro-
graphic precipitation is a natural laboratory for cloud
physics and dynamics (Rauber 1992). For this reason, in
addition to its practical importance, the subject has re-
ceived considerable attention (Smith 2004). A summary
of proposed physical models is given in Table 1; see also

a review from the early 1990s by Barros and Letten-
maier (1994). As seen in the table, simple models have
advanced over time. In parallel, the development of full
numerical models has proceeded quickly, now offering
a variety of “dynamical cores,” cloud physics param-
eterizations, and methods for applying boundary and
initial conditions (e.g., Hodur 1997). With all these
models available, the question of model verification be-
comes more urgent. Model development without data
constraint is inefficient and unproductive.

Data for evaluating precipitation models comes from
two sources: 1) routine climatological rain gauge, radar,
and streamflow measurements and 2) intense field pro-
grams with enhanced observing systems.

Model comparison with proxy methods such as
stream gauges, which is inferred from area-integrated
precipitation, involves an additional model to handle
runoff delays (Jasper and Kaufmann 2003), adding un-
certainties. Radar information is often truncated by
shielding terrain (White et al. 2003), and in addition
there are problems such as refraction, particularly for
short-wave radars. Even in more traditional rain gauge
networks, the accuracy might be poor because of fac-
tors like the airflow around the collector (Yang et al.
1998). In snow drift cases this is particularly true (H.
Olafsson 2003, personal communication).

Over the last three decades, many targeted field pro-
grams have been carried out around the globe, for ex-
ample in the European and New Zealand Alps, and in
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the Cascade, Sierra, and Wasatch Ranges in the west-
ern United States. In this paper, we focus on conven-
tional point precipitation data from three field pro-
grams: the Intermountain Precipitation Experiment
(IPEX; Schultz et al. 2002), the California Land-falling
Jets Experiment (CALJET; Ralph et al. 1998), and the
Mesoscale Alpine Programme (MAP; Bougeault et al.
1997, 2001). Thus, our work can be put in a context of
more complete observations and analysis (sections
4–6). For a prototype model, we choose the linear
theory of Smith and Barstad (2004) as it is simple to
apply and has a small set of free parameters. A similar
exercise could be undertaken with any other simple or
full numerical model.

This paper is organized as follows. A brief outline of
the linear model development is found in section 2. In
section 3 we investigate the sensitivity of point data to
model parameters. In section 4, we introduce a new
statistical measure of model performance. In section 5
we create a synthesized dataset and test if we are able
to infer the uncertain input parameters to the model.
We also show how errors in the data make this infer-
ence of input parameters more difficult. In section 6, we
test the model against data from three field projects.
Section 7 summarizes our results.

2. The linear theory of orographic precipitation

As a prototype physical model, we use the linear
steady-state theory of orographic precipitation pro-
posed by Smith and Barstad (2004). A key component
of the model is the advection of vertically integrated
condensed water [qc(x,y) � cloud water density and
qf(x,y) � hydrometeor density] written as

U · �qc � S�x, y� � qc ��c and �1a�

U · �qf � qc ��c � qf ��f , �1b�

where �c and �f are the constant characteristic time
scales for cloud water conversion and hydrometeor fall-
out and S the source term of cloud water. See Table 2
for further explanation of variables. If airflow dynamics
is neglected, S in (1a) can simply be S(x,y) �
�v0U · �h(x, y) [i.e., the raw upslope model from Smith
(1979)], where �v0 is the average water vapor density at
the surface and �h the terrain slope. As lifting in front
of a mountain drives S positive, the sink in (1a) acts in
(1b) as a source, and (1b) has precipitation [P(x,y) �
qf /�f] as the final sink to the system; S gets the opposite
sign in downslope regions. Negative precipitation gen-

TABLE 1. A selection of orographic precipitation models showing the evolution throughout the years. An empirical precipitation
efficiency factor (PE factor) is often used to limit the precipitation. In the second column, raw upslope is the vertical velocity constant
with height, simple is the linear reduction with height to the level of no vertical motion, linear wave is the linear gravity wave theory,
and numerical solves equations numerically.

References Airflow dynamics Cloud physics Remarks

Fraser et al. (1973); Hobbs et al. (1973) 2D, linear wave Sophisticated Ice phase only
Collier (1975) Simple Drift only
Colton (1976) 2D, ? Drift only PE factor
Rhea (1978); Hay and McCabe (1998) Simple Drift only PE factor
Smith (1979) Raw upslope Instant
Alpert and Shafir (1989) Raw upslope Drift, diffuse PE factor
Haiden et al. (1990) Simple Conversion, drift
Oki et al. (1991) Nonlinear, numerical Instant PE factor
Barros and Lettenmaier (1993) 3D, linear wave Instant PE factor; see various extensions

in the literature
Sinclair (1994) Simple Instant PE factor
Smith (2003) Raw upslope Linear, conversion and drift Tune with terrain smoothing
Kunz (2003) 3D, linear wave Conversion and drift PE factor
Smith and Barstad (2004) 3D, linear wave Linear, conversion and drift Tune with time delay
Colle et al. (1999); Mass et al. (2002) Nonlinear, numerical Sophisticated Full numerical model

TABLE 2. Some explanation of symbols used in the linear model.

Name Symbol Typical values

Terrain elevation h(x,y) 1–2000 m
Intrinsic frequency; k and l are respective wavenumbers � � Uk � Vl 0.01–0.0001 s�1

Horizontal wind; U and V are respective components U � Ui � Vj 1–50 m s�1

Moist stability frequency N 0–0.01 s�1

Water vapor scale height Hw 1–5 km
Conversion time �c 200–2000 s
Fallout time �f 200–2000 s
Uplift sensitivity factor: �	0 � surface water vapor density, 
 � environmental

lapse rate, � � moist-adiabatic lapse rate
Cw � �	0
/� 0.001–0.02 kg m�3

Background precipitation rate P� 0–5 mm h�1

Vertical wavenumber m 0.01–0.0001 m�1
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erated in strong downdrafts is unphysical and is trun-
cated away.

These equations, and the airflow dynamics equations,
can be solved using Fourier transforms to obtain

P̂�k, l� �
Cwi�ĥ�k, l�

�1 � imHw��1 � i��c��1 � i��f�
and �2�

P�x, y� � �� P̂�k, l�ei�kx�ly�dkdl � P�. �3�

The symbols in (2) and (3) are described in Table 2.
The first parenthesis in the denominator in (2) de-
scribes how the source term is modified by airflow dy-
namics. The two remaining parentheses in (2) describe
the advection of condensed water during conversion
and fallout. The model reduces to the raw upslope
model when Hw � �c � �f � 0 and Cw � �v0. See Smith
and Barstad (2004) for further detail about the model.

The pattern and amount of precipitation predicted by
(2) is controlled primarily by two types of nondimen-
sional parameter. First is the nondimensional moist
layer depth, H̃ � NHw/U, where U is the magnitude of
the wind. Large values of H̃ reduce the amount of con-
densation as the uplift does not penetrate the moist
layer. The condensation is also shifted upstream due to
gravity wave tilt. The other type of control parameter is
the nondimensional cloud drift time �̃ � U�/a, where a
is the mountain half-width. Large values of �̃ indicate
that condensed water will drift onto the lee slopes and
evaporate, instead of converting and falling on the
windward slopes. For the purpose of simplifying the
analysis, we have set the two tau values equal through-
out this paper. A discussion of this approach may be
found in Smith and Barstad (2004).

3. Parametric sensitivity of point precipitation

In this section, we show how sensitive point precipi-
tation is to the governing parameters in a physical
model. The insight gained here will help in the real
analyses to follow.

The sensitivity of precipitation to �̃ and H̃ is dis-
played by mapping out the parameter space defined by
these numbers for a specific point. An isolated circular
Gaussian mountain with half-width a � 20 km is chosen
as the underlying topography. In linear theory the
mountain height (hm) is a multiplier rather than a con-
trol parameter. The parameter space for three chosen
points across the centerline of the mountain are shown
in Fig. 1: (a) the upslope point, (b) the mountain peak,
and (c) the downslope point. The precipitation values
are normalized with the raw upslope value (�̃ � 0, H̃ �
0) for the upslope point (x � �a).

Point a has its maxima, equal to unity (i.e., the raw
upslope value), close to its origin in Fig. 1a. As the
moist layer deepens (increased H̃), the forced ascent
is unable to penetrate and condense vapor at all levels.

As the cloud time delay (i.e., �̃) increases, the precipi-
tation is advected downstream of point a. A minor ef-
fect, barely seen in Fig. 1, is the increase in precipitation
with �̃ for large moist layer depth. The tilted wave re-
quires a larger �̃ to carry precipitation back to the wind-
ward slope station.

For point b at the hilltop, the maximum is shifted to
�̃  0.4 and is slightly reduced because of the smoothing
effect from the increased tau. As the condensation
source function is maximum upstream of point a, con-
siderable advection is required to bring precipitation to
point b. In Fig. 1b, we also see the effect of the tilted
wave. As the moist layer depth increases, a greater
cloud delay is necessary to counteract the effect of up-
stream wave tilt.

Precipitation at point c has a much smaller magni-
tude and its sharp maximum is located around �̃ � 2.
The sharp gradient just below unity is due to drying
aloft above the mountain peak caused by the wave dy-
namics. Only for mountain widths comparable to or less
than U� will precipitation particles spill over to point c
on the lee side.

4. Measures of model skill

The skill of a model must be judged from a statistical
measure. Various scores and skills may be found in the
literature. Textbooks by Wilks (1995) and Jolliffe and
Stephenson (2003) provide an introduction to forecast
verification. A shorter text by Nurmi (2003) gives a nice
review of the various measures and their capabilities.
See also the overview by Jasper and Kaufmann (2003).

Some studies have assigned precipitation observa-
tions to intervals—so-called stratification by precipita-
tion—evaluated by various score and skill measures
(Wilks 1995; Colle et al. 1999). Stensrud and Wandishin
(2000) presented a summary of various measures and
proposed a correspondence ratio in the evaluation of
forecasts. Their measure is an extension of the well-
known threat score and, therefore, requires stratifica-
tion of the compared fields. Cherubini et al. (2002) pre-
sented upscaling techniques as an alternative to point-
precipitation-based evaluation. Typically measures like
root-mean-square error (rmse; see definitions below)
and bias (bias) are involved in the evaluation. We shall
see in section 5 that models having very detailed fields
are normally penalized more harshly than smooth mod-
els for inaccuracies. This might explain why increased
resolution in numerical models is not rewarded propor-
tionally (Mass et al. 2002). To mitigate this, we will add
another measure to our evaluation approach.

The traditional spatial error estimates such as rmse
and bias are defined as

rmse ��1
n �

i�1

n

�Pi � Oi�
2 and �4�
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bias �
1
n �

i�1

n

�Pi � Oi�, �5�

where n is the number of samples, and Pi and Oi are the
predicted and observed samples, respectively (Wilks
1995).

A deficiency of a measure often used in the evalua-
tion of models can easily be illustrated using a regular
Pearson correlation (Wilks 1995); imagine two series
made up of random numbers. The correlation is near
zero. By smoothing one of the series, the correlation
improves. Measures without constraints on the level of
details are in danger of favoring smoother fields. We
prefer statistical measures that give credit for both de-
tails and accuracy, particularly as we deal with oro-
graphic precipitation characterized by large spatial vari-
ability. This will encourage the development of detailed
models. For these reasons, we propose a new measure
called location sensitivity skill (LSS).

Calculation of the LSS is done by testing the error
estimates E (e.g., bias and rmse) when station locations
are moved randomly around within an assigned radius

(rmax) from the correct location. Numbers from a ran-
dom generator determine the angle and distance from
the correct location within rmax; see illustrations in Fig.
2. The maximum radius is steadily increased and the
error estimate is repeatedly recalculated. Ideally, the

FIG. 1. Parameter space (see text) for normalized precipitation
on a circular Gaussian mountain for three specific points: (a)
mountain upstream half-width, (b) mountain center, and (c)
mountain downstream half-width. The precipitation at the vari-
ous points is normalized with the upstream half-width value of
the raw upslope model. The axes relate to the nondimensional
moist layer depth (Ĥ) and cloud time delay (�̂).

FIG. 2. Schematic drawing of how the location sensitivity skill
(LSS) works. (left) An assigned maximum radius (rmax) constrains
the “new” location (dot) of the station. (right) A schematic pic-
ture of how the error estimate (E ) is a function of rmax; E� is
evaluated at rc. See text for further explanations.
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